Nucleotide excision repair (NER) alterations as evolving biomarkers and therapeutic targets in epithelial cancers.

نویسندگان

  • Kent W Mouw
  • Alan D D'Andrea
  • Panagiotis A Konstantinopoulos
چکیده

The nucleotide excision repair (NER) pathway is a highly conserved and remarkably versatile DNA repair pathway that functions to identify and repair bulky intrastrand DNA crosslinks generated by a variety of genotoxic agents including platinum drugs. Platinum analogs are active anticancer agents and constitute the backbone of first-line chemotherapy used in a number of epithelial malignancies. Given the role of the NER pathway in repair of platinum-induced DNA damage, a number of studies have recently investigated the prevalence and of NER pathway alterations in various epithelial tumors as well as their association with response to platinum and other chemotherapy agents. In epithelial ovarian cancer (EOC), analysis of the TCGA data set revealed that nearly half of all EOCs harbor an alteration in the homologous recombination (HR) pathway, which includes BRCA1 and BRCA2 (BRCA1/2). In addition, 8% of high-grade serous EOCs have an alteration (non-synonymous mutation, splice site mutation, promoter hypermethylation, or homozygous deletion) of at least one gene in the NER pathway, and half of these NER alterations (4% of tumors overall) occurred in the absence of a known HR alteration.[1] Patients with tumors harboring NER alterations had improved overall and progression-free survival compared to tumors without NER or BRCA1/2 alterations. Given that nearly all EOC patients receive platinum-based chemotherapy, and because the durability of platinum response is closely associated with survival in these patients, the improved survival of patients with NER-altered tumors likely reflects increased platinum sensitivity in this population. Moreover, survival of patients with NER-altered tumors was similar to patients with tumors harboring BRCA1/2 alterations, suggesting that NER pathway alterations may contribute to EOC platinum sensitivity to an extent similar to the effect of BRCA1/2 loss. Importantly, unlike BRCA1/2 alterations, NER pathway alterations were not associated with sensitivity to poly(ADP-ribose) polymerase (PARP)-inhibitors. Functional analysis of several NER mutations identified in the TCGA cohort revealed that expression of the mutant in a NER-deficient background failed to rescue cisplatin sensitivity, whereas no difference in PARP-inhibitor sensitivity or HR activity was noted. Together, these findings identify an important subset of NER-deficient, HR-proficient EOCs with discordant platinum and PARPinhibitor profiles, and underscore the potential role of NER pathway alterations as predictive biomarkers of response to specific anticancer therapies. More broadly, NER pathway alterations are also being identified in other epithelial tumor types and may serve as important biomarkers in diverse clinical settings where platinum agents are commonly employed. In urothelial carcinoma, we and others recently identified recurrent ERCC2 mutations, and show that ERCC2deficient tumors have increased response rates to cisplatinbased chemotherapy regimens.[2, 3] Review of the TCGA dataset using the cBIO portal reveals presence of NER alterations in several other epithelial cancers[4] (Figure 1), and additional studies may identify other clinical contexts in which NER pathway alterations could be used to inform therapy selection. Finally, it is important to note that NER pathway alterations may also render tumors susceptible to novel anticancer therapies such as targeted immunotherapies Editorial

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance.

Platinum and PARP inhibitor (PARPi) sensitivity commonly coexist in epithelial ovarian cancer (EOC) due to the high prevalence of alterations in the homologous recombination (HR) DNA repair pathway that confer sensitivity to both drugs. In this report, we describe a unique subset of EOC with alterations in another DNA repair pathway, the nucleotide excision repair (NER) pathway, which may exhib...

متن کامل

DNA Base Excision Repair: Evolving Biomarkers for Personalized Therapies in Cancer

DNA repair is critical for maintaining genomic integrity. The DNA damage such as those induced by endogenous processes (methylation, hydroxylation, oxidation by free radicals) or by exogenous agents such as ionizing radiation, environmental toxins, and chemotherapy is processed through the DNA repair machinery in cells. At least six distinct DNA repair pathways have been described. A detailed d...

متن کامل

Identifying biomarkers for resistance to novel cisplatin analogues in human lung, breast and prostate cancers

Identifying Biomarkers for Resistance to Novel Cisplatin Analogues in Human Lung, Breast and Prostate Cancers by Becky Michelle Hess Dr. Bryan L. Spangelo, Examination Committee Chair Professor of Chemistry University of Nevada, Las Vegas Cisplatin is a common therapeutic agent used in cancer treatment. Unfortunately, resistance to cisplatin in addition to severe side effects limits its use in ...

متن کامل

True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

Nucleotide excision repair (NER) is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological an...

متن کامل

Do not underestimate nucleotide excision repair: It not only predicts melanoma risk but also survival outcome

Nucleotide excision repair (NER) removes UV-induced DNA damage and other bulky DNA lesions, thereby maintaining genomic integrity. Dr Qingyi Wei's group demonstrated over the last decade that NER fidelity and single-nucleotide polymorphisms (SNPs) in NER genes constitute melanoma risk biomarkers. In this issue, Li et al. provide evidence that SNPs in NER genes may also predict melanoma survival.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncoscience

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 2015